skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Butler-Morton, Brittany L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As engineering students transition from their undergraduate education into their first full-time roles within industry, they are often facing a two year induction period as a result of a Theory-to-Practice gap (Gao & Rhinehart, 2004; Rhinehart, 2019, Rhinehart 2015). The gap between engineering students and industry practitioners can be the result of many different factors: students learning complex and fundamental concepts through simple problems, students having difficulty combining knowledge from different courses to solve realistic scenarios, or the lack of time students have to master these concepts (Rhinehart, 2015). This two year induction period causes problems for the company, the individuals, and for higher education, so it is important to identify areas where this gap exists and how it can potentially be mitigated. One area worthy of investigation related to the Theory to Practice gap is the field of process safety education due to its significant impact on professional practice. This pilot study sought to gain an initial understanding of what differences may exist between how experienced industry practitioners and undergraduate engineering students approach process safety judgments. We used this data as a means for determining if approaches to process safety judgments may be an area related to where this gap has been observed. As part of the pilot study, we conducted interviews with both students and practitioners where we provided them with a list of competing criteria that are relevant to process safety judgements such as time, production, and relationships, and then asked them to describe their approach to making process safety judgments given five specific scenarios. We found that industry practitioners and students were both relying on previous experience when describing their approaches to process safety judgments. Practitioners related the scenarios to prior work place events, while students connected them to problems they learned about in class, internships, or retail jobs. A noted difference between industry practitioners and students was that industry practitioners also described being heavily influenced by relationships with co-workers, superiors, and families when approaching these judgments, which seemed to be lacking in the student responses. Past process safety incidents, as documented by the United States Chemical Safety and Hazard Investigation Board (CSB), have shown that the dynamics of relationships can have an impact on judgment processes which lead to detrimental results. The findings from this study provide additional support for the role of relationships in process safety judgments and the need for process safety instruction that addresses this role. Moving forward, it will be important to expose undergraduate students to the role of relationships in judgment-making processes so that we can better prepare them to navigate the complexities of process safety judgments. 
    more » « less
  2. As engineering students transition from their undergraduate education into their first full-time roles within industry, they are often facing a two year induction period as a result of a Theory-to-Practice gap (Gao & Rhinehart, 2004; Rhinehart, 2019, Rhinehart 2015). The gap between engineering students and industry practitioners can be the result of many different factors: students learning complex and fundamental concepts through simple problems, students having difficulty combining knowledge from different courses to solve realistic scenarios, or the lack of time students have to master these concepts (Rhinehart, 2015). This two year induction period causes problems for the company, the individuals, and for higher education, so it is important to identify areas where this gap exists and how it can potentially be mitigated. One area worthy of investigation related to the Theory to Practice gap is the field of process safety education due to its significant impact on professional practice. This pilot study sought to gain an initial understanding of what differences may exist between how experienced industry practitioners and undergraduate engineering students approach process safety judgments. We used this data as a means for determining if approaches to process safety judgments may be an area related to where this gap has been observed. As part of the pilot study, we conducted interviews with both students and practitioners where we provided them with a list of competing criteria that are relevant to process safety judgements such as time, production, and relationships, and then asked them to describe their approach to making process safety judgments given five specific scenarios. We found that industry practitioners and students were both relying on previous experience when describing their approaches to process safety judgments. Practitioners related the scenarios to prior work place events, while students connected them to problems they learned about in class, internships, or retail jobs. A noted difference between industry practitioners and students was that industry practitioners also described being heavily influenced by relationships with co-workers, superiors, and families when approaching these judgments, which seemed to be lacking in the student responses. Past process safety incidents, as documented by the United States Chemical Safety and Hazard Investigation Board (CSB), have shown that the dynamics of relationships can have an impact on judgment processes which lead to detrimental results. The findings from this study provide additional support for the role of relationships in process safety judgments and the need for process safety instruction that addresses this role. Moving forward, it will be important to expose undergraduate students to the role of relationships in judgment-making processes so that we can better prepare them to navigate the complexities of process safety judgments. 
    more » « less
  3. As engineering students transition from their undergraduate education into their first full-time roles within industry, they are often facing a two year induction period as a result of a Theory-to-Practice gap (Gao & Rhinehart, 2004; Rhinehart, 2019, Rhinehart 2015). The gap between engineering students and industry practitioners can be the result of many different factors: students learning complex and fundamental concepts through simple problems, students having difficulty combining knowledge from different courses to solve realistic scenarios, or the lack of time students have to master these concepts (Rhinehart, 2015). This two year induction period causes problems for the company, the individuals, and for higher education, so it is important to identify areas where this gap exists and how it can potentially be mitigated. One area worthy of investigation related to the Theory to Practice gap is the field of process safety education due to its significant impact on professional practice. This pilot study sought to gain an initial understanding of what differences may exist between how experienced industry practitioners and undergraduate engineering students approach process safety judgments. We used this data as a means for determining if approaches to process safety judgments may be an area related to where this gap has been observed. As part of the pilot study, we conducted interviews with both students and practitioners where we provided them with a list of competing criteria that are relevant to process safety judgements such as time, production, and relationships, and then asked them to describe their approach to making process safety judgments given five specific scenarios. We found that industry practitioners and students were both relying on previous experience when describing their approaches to process safety judgments. Practitioners related the scenarios to prior work place events, while students connected them to problems they learned about in class, internships, or retail jobs. A noted difference between industry practitioners and students was that industry practitioners also described being heavily influenced by relationships with co-workers, superiors, and families when approaching these judgments, which seemed to be lacking in the student responses. Past process safety incidents, as documented by the United States Chemical Safety and Hazard Investigation Board (CSB), have shown that the dynamics of relationships can have an impact on judgment processes which lead to detrimental results. The findings from this study provide additional support for the role of relationships in process safety judgments and the need for process safety instruction that addresses this role. Moving forward, it will be important to expose undergraduate students to the role of relationships in judgment-making processes so that we can better prepare them to navigate the complexities of process safety judgments. 
    more » « less
  4. The existing curriculum and models for civil engineering graduate programs assume that graduating Ph.D. students will primarily pursue career opportunities in research or academia. However, the number of civil engineering Ph.D. graduate students continues to increase, while the number of opportunities in academia for civil engineers remains stagnant. As a result, it is becoming increasingly apparent that the civil engineering graduate programs must be reevaluated to assist students entering industry after graduation. As part of a larger research study funded through the NSF Innovations in Graduate Education (IGE), we aim to answer the following research questions: 1) How can a research-to-practice model assist students in preparing for a transportation engineering career outside of academia?, 2) What impacts does the research-to-practice graduate model have on the development of transportation engineering doctoral students’ professional identity?, 3) How does the cognitive apprenticeship framework prepare doctoral students for professional practice in transportation engineering?, and 4) What influences does the research-to-practice model have on doctoral students’ motivation toward degree completion? As part of the first phase for the project, two surveys were developed: a graduate engineering student motivation survey based on Expectancy-Value-Theory, and an instrument based on the Cognitive Apprenticeship framework. The motivation survey was based on an instrument designed and validated by Brown & Matusovich (2013) which aimed to measure undergraduate engineering students' motivation towards obtaining an engineering degree. The survey prompts were reviewed and rewritten to reflect the change in context from undergraduate to graduate school. Revised survey prompts were reviewed with a group of graduate engineering students through a think aloud protocol and changes to the instrument were made to ensure consistency in interpretation of the prompts (Rodriguez-Mejia and Bodnar, 2023). The cognitive apprenticeship instrument was derived from the Maastricht Clinical Teaching Questionnaire (MCTQ), originally designed to offer clinical educators feedback on their teaching abilities, as provided by medical students during their clerkship rotations (Stalmeijer et al., 2010). To tailor it to the context of engineering graduate students, the MCTQ's 24 items were carefully examined and rephrased. A think aloud was conducted with three civil engineering graduate students to determine the effectiveness and clarity of the cognitive apprenticeship instrument. Preliminary results show that minimal clarification is needed for some items, and suggestions to include items which address support from their mentors. The other part of the project assessment involves students completing monthly reflections to obtain their opinions on specific events such as seminars or classes, and identify their perceptions of their identity as professionals, scientists, or researchers. Preliminary results suggest that the students involved place an emphasis on developing critical thinking and planning skills to become an engineering professional, but de-emphasize passion and enjoyment. This paper will report on initial findings obtained through this first phase of the IGE project. 
    more » « less